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Increasing urea fertilizer use has been tied to 
more frequent harmful algal blooms
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The Manokin River watershed
A history of urea-induced harmful algal blooms
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Pfiesteria casts shadow over Md.'s fish farms. Somerset 

fish farmer warily searches his ponds for deadly microbe

PRINCESS ANNE -- Tony Mazzaccaro last week peered through a microscope lens, searching 
for an elusive killer. "I just don't see it," he said. "Looks like I won't have to nuke the pond 
after all."
This time.
Mazzaccaro, owner of the Hyrock fish farm by the Manokin River in Somerset County, was 
looking for a microorganism that might have been responsible for killing 8,000 of his hybrid 
striped bass in early August. A year earlier, a microbe may have killed 23,000 of his farm's 
adult bass.



Today’s presentation

1. Transfers of recently 
applied urea to overland 
flow and leachate.

Overland flow Leaching

2. Urea mobilization and 
transport patterns in 
surface waters.

Ditches Streams Tidal waters

3. Postulating an influence 
of legacy nitrate on in 
situ urea generation.
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Urea and nitrate losses in overland flow

The greatest risk for urea-N loss in 
overland flow occurs within one 
week of application, while nitrate-N 
losses persist for several weeks.

99 % of 
applied urea 
was either 
retained or 
hydrolyzed and 
mineralized

150 kg ha-1 of 45-0-0 applied to each box

1 % lost as 
urea-N in 
runoff
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Week

Leaching data courtesy of Han Kun

Urea levels in leachate and 
in shallow groundwater
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Urea-N leaching is brief and does 
not appear to yield comparably 
high urea concentrations in 
shallow groundwater.  

Urea-N in shallow groundwater

Groundwater data courtesy of Leonard Kibet
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Nitrate-N leaching in intact soil columns
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Nitrate-N leaching is prolonged 
and clearly contributes to and 
exacerbates groundwater 
nitrogen legacies.  

Nitrate levels in leachate and 
in shallow groundwater

12 % loss



Adapted from Kleinman et al., 2007 (J. Soil Water Conserv.)

Subsurface flow (> 90%)

Overland flow (< 10%)

Majority of nutrients are transported by 
subsurface flow pathways



Monitoring urea in field ditches, 
streams, and tidal waters
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18 sites established 
across the watershed
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Urea concentrations in baseflow
Highest in summer months and again in early fall
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Urea levels increase during storms
Especially in field drainage ditches
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Urea and nitrate patterns during a large storm
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Role of legacy N in urea generation?

NO3-N Urea-N

Groundwater is hydraulically 
connected to ditch.

Nitrate-N delivery to ditch 
waters from groundwater.

Uptake of nitrate-N by 
microbiota in ditch water?

Groundwater is hydraulically 
disconnected from ditch.

Denitrification as ditch 
water becomes stagnant.

Urea release from 
sediments and/or biota?



Mesocosm Studies
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Ditch Sediments

Wetland

Forest

Agricultural Ditch

Recently Cleaned 
Ag Ditch

Sterile Sand Control

5 sites x

3 temperature 

treatments x

5 solution 

types = 75 conditions

Agriculture ditch 15.0 oC H2O

Cleaned agriculture ditch 22.5 oC 5 mg NH4
+-N l-1

Forest ditch 30.0 oC 10 mg NH4
+-N l-1

Wetland 5 mg NO3
--N l-1

Control 10 mg NO3
--N l-1



Treatment Response



Temperature Response



Transfers of recently applied urea to water are unlikely 
under normal climate conditions and management. 

Conclusions

Evidence suggests that N-rich groundwater delivered to 
field ditches may be converted to urea as flows recede.  

Urea that is generated in situ would be available for 
hydrologic transport in subsequent storm events.  

We hypothesize that legacy nitrogen in groundwater 
may play a key role in urea cycling and movement.  



Switching away from urea-N fertilizers is unlikely to 
result in decreased urea loads to coastal waters. 

Implications

Ditch management to prevent stagnant pools of water 
in ditches may reduce in situ urea formation.

Reduced nitrate concentrations in groundwater 
through improved N use efficiency may reduce in situ 
urea formation.  


